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In the present work we deal with the scattering dispersion and attenuation of elastic waves in
different types of nonhomogeneous media. The iterative effective medium approximation based on
a single scattering consideration, for the estimation of wave dispersion and attenuation, proposed in
Tsinopouloset al., @Adv. Compos. Lett.9, 193–200~2000!# is examined herein not only for solid
components but for liquid suspensions as well. The iterations are conducted by means of the
classical relation of Waterman and Truell, while the self-consistent condition proposed by Kimet al.
@J. Acoust. Soc. Am.97, 1380–1388~1995!# is used for the convergence of the iterative procedure.
The single scattering problem is solved using the Ying and Truell formulation, which with a minor
modification can accommodate the solution of scattering on inclusions in liquid. Theoretical results
for several different systems of particulates and suspensions are presented being in excellent
agreement with experimental data taken from the literature. ©2004 Acoustical Society of America.
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I. INTRODUCTION

When a plane wave travels through a suspension of
ticles like particulate composites~solid particles in solids!,
liquid suspensions~solid particles in fluid!, and emulsions
~fluid inclusions in fluid!, multiple scattering occurs and pa
of the incident energy is transferred to the scattered fie
Parameters such as the frequency of the incident wave
relative position among the particles, the geometry of
particles and the material properties of both matrix and
clusions affect the amount of this energy. Thus, althou
matrix and particles can be nonattenuative, the amplitud
waves propagating through suspensions decays and th
cay rate is frequency dependent. For a plane wave the d
of its amplitude is expressed via a frequency dependent
ponential coefficient known as an attenuation coefficient.
the other hand, the size of the particles as well as the mat
mismatch between particles and surrounding medium im
that the dynamic behavior of the composite medium
strongly depended on the excitation frequency of the incid
wave. Macroscopically this means that the phase velocit
a plane wave traveling through a suspension of particle
frequency dependent. This phenomenon is known in the
erature as wave dispersion.

The quantitative determination of dispersion and atte
ation of a plane wave, caused by a random distribution
inhomogeneities, is a problem which has been studied in
sively either theoretically or experimentally by many inve
tigators in the past. The first important theoretical work
the subject is that of Foldy1 who, employing a configura
tional averaging procedure, derived a dispersion relation

a!Electronic mail: polyzos@mech.upatras.gr
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scalar wave propagation through a medium containing
tropic scatterers. Later, Lax2 extended the work of Foldy and
proposed a new dispersion relation for multiple wave sc
tering by anisotropic scatterers. In both works the wave d
persion and attenuation was represented via a frequency
pendent complex wave number expressed in terms of
particle concentration and the forward far field scattering a
plitude taken from the solution of the single particle wa
scattering problem. The results of Lax were further improv
by Waterman and Truell,3 Twersky,4 Lloyd and Berry,5

Varadanet al.6 and Javanaux and Tomas7 who derived dis-
persion relation expressed in terms of the particle concen
tion and the forward as well as the backward scattering a
plitude of the single scattering problem inserting thus
contribution of the back-scattering to the multiple scatter
process.

The above mentioned multiple scattering theories h
been extensively exploited by many investigators in orde
explain wave dispersion and attenuation observed in exp
ments dealing with wave propagation in nonhomogene
fluids and solids. Here one can mention the representa
works of Sayers and Smith,8 Ledbetter and Datta,9 Norris,10

Anson and Chivers,11 Shido et al.,12 Lu and Liaw13 and
Challis et al.14 for particulate composites, the works o
Holmeset al.,15 Mobley et al.,16 Meulen et al.,17 for elastic
particles in liquid suspensions and the works of McCleme
and Povey18 and McClemens19 for emulsions. In most of
these articles, spherical inclusions are considered while
far field parameters of the single particle wave scatter
problem, used in the dispersion and attenuation express
are mainly taken from the works of Epstein and Carhart20 for
emulsions, Allegra and Hawley21 for elastic particles in a
liquid continuum and Ying and Truell22 for suspensions of
3443443/10/$20.00 © 2004 Acoustical Society of America
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solids in solids. Comparisons showed that, for cases of
ticulate composites with a significant mismatch between
physical properties of particles and matrix, the aforem
tioned multiple scattering theories predict well only for ve
low concentrations of particles~less than 10%!, while their
prediction efficiency, in terms of particles concentration, c
be improved in cases of nonhomogeneous solids with sm
differences in the physical properties of the material const
ents. On the other hand, the simple multiple scattering th
ries of Foldy,1 Waterman and Truell3 and Lloyd and Berry5

enhanced by the Epstein and Carhart20 and Allegra and
Hawley21 models, where besides the interaction of t
spherical particle with the incident wave, heat transport p
nomena between particles and surrounding medium are t
into account, provide reasonable predictions for liquid s
pensions and emulsions with concentrations up to 20%. T
is an expected result since, due to mode conversion, mul
scattering effects are more pronounced in solid than in liq
suspensions. Eventually, one can say here that none of th
far mentioned theories is able to provide acceptable w
dispersion and attenuation predictions for all the types
suspensions and for a wide range of particle concentrat
and wavenumbers.

Besides the aforementioned fundamental multiple s
tering procedures, many analytical semi-analytical and
merical models for predicting wave dispersion and atten
tion in nonhomogeneous media have been proposed in
literature. Among them, the methodologies applied for b
solid and liquid suspensions can be grouped into two cate
ries. In the first category belong the works that provide d
persion and attenuation expressions by means of
Kramers–Kroning relations. Representative works are th
of Beltzer et al.23 and Beltzer24 for particulate composites
and the works of Temkin,25 Ye26 and Leander27 for suspen-
sions, while an excellent mathematical description and d
vation of Kramers–Kroning relations can be found in t
work of Weaver and Pao.28 However, as it is mentioned in
the book of Zhang and Gross29 and noted in the paper o
Temkin,30 Kramers–Kroning relations provide satisfacto
results only for low concentrations of particles while one
the quantities phase velocity and attenuation coeffic
should be known independently. The second category c
cerns the self-consistent theories. According to these th
ries, the frequency dependent wave velocity and attenua
coefficient are evaluated through self-consistent express
most of which are based on scattering parameters taken
the solution of the single scattering problem where the
crostructure of the composite medium is immersed into
infinitely extended effective medium. The self-consistent
effective medium theories appear in the literature with d
ferent versions and procedures depending on the type of
pensions they applied. Thus, for particulate composites
can mention the self-consistent models of Talbot a
Willis,31 Sabina and Willis32 and Devaney,33 the effective
medium approximations of Kerr34 and Kanaunet al.,35 the
dynamic self-consistent effective medium approximations
Berryman,36 Kim et al.37 and Tsinopouloset al.38 and the
incremental self-consistent approach of Anson and Chive11

and Biwa et al.39 For liquid suspensions, one can menti
3444 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004
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the effective medium approaches of Anson and Chiver40

Hemar et al.,41 Cowan et al.,42 McClements et al.43 and
Hipp et al.44,45 and the coupled-phase models of Hark
et al.,46 Atkinson and Kytomaa47 and Evans and
Attenborough.48 Comparisons with experimental results ha
shown that the self-consistent models are those which
able to predict satisfactory the behavior of a wave pu
propagating within a dense distribution of particle-scattere

Recently, Kimet al.37 presented a modified version o
the coherent potential approximation,49–52 in order to predict
the speed and the coherent attenuation of an elastic w
propagating in a medium containing randomly distribute
solid spherical inclusions. The frequency dependent effec
stiffness and density of the composite are obtained by s
ing a system of three nonlinear volume-integral equations
which, however, the interior dynamic displacement field o
single inclusion immersed in an infinitely extended effecti
medium must be knowna priori. Although in their theory
correlations among the scatterers are neglected, their re
were in a good agreement with experimental observation

Kanaunet al.35 claim that the application of this effec
tive medium scheme for wave propagation problems is qu
tionable, since matrix and inclusions play quite differe
roles in the process of wave diffraction. However, scatter
occurs due to the interaction of the incident wave with t
randomly distributed particles. Thus, considering inclusio
and matrix as scatterers the surfaces of which have oppo
unit normal vector, the self-consistent hypothesis of K
et al.37 seems to be quite reasonable

Later, Tsinopouloset al.38 proposed an iterative effectiv
medium approximation~IEMA ! combining effectively the
self-consistent model of Kimet al.37 and the simple multiple
scattering theory of Foldy.1 In their work, the evaluation of
the wave speed and attenuation coefficient was accomplis
through a practical and simple iterative procedure avoid
thus the solution of complex nonlinear systems of equati
such those required in the approximation of Kimet al.More-
over, comparing the estimations provided by the two me
ods, IEMA appears to be more efficient and accurate in ca
of highly concentrated elastic mixtures.

Here, the IEMA of Tsinopouloset al.38 is properly modi-
fied and improved in order to predict well wave dispersi
and attenuation in particulate composites, particle susp
sions and emulsions. Our aim in the current work is twofo
first to develop a single theoretical model that predicts w
wave dispersion and attenuation for all types of suspens
and second to provide an iterative computational scheme
for the case of spherical particles is simple and easily imp
mented. The present new version of IEMA combines
self-consistent model of Kimet al.37 with the quasicrystal-
line approximation of Waterman and Truell.3 Considering the
effective material properties of the composite medium be
the same with the static elastic ones proposed
Christensen,53 properly modified for liquid mixtures, and sa
isfying the single scattering self-consistent condition of T
nopouloset al.,38 the effective and frequency dependent d
namic density of the nonhomogeneous medium is evalua
The complex value of the effective density in conjuncti
with the static effective stiffness of the composite mediu
Aggelis et al.: Dispersion and attenuation predictions in suspensions
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determine both the velocity and the attenuation of an ul
sonic pulse propagating in the random particulate susp
sion. The single scattering problem is solved using the Y
and Truell22 formulation, which with minor modification can
accommodate solution of scattering problems dealing w
inclusions suspended in liquid matrix. Several numerical
sults compared with experimental data taken from the lite
ture demonstrate the IEMA efficiency on predicting wa
dispersion and attenuation in all types of particle susp
sions.

II. THE IEMA FOR PARTICLE SUSPENSIONS

In this section, the IEMA proposed recently by Tsinop
uloset al.38 and modified for the needs of the present work
presented.

The starting point of the IEMA is a self-consistent co
dition first considered in the coherent potential theory
Soven.49 According to this theory, any wave propagating in
composite medium can be considered as a sum of a m
wave propagating in a medium having the dynamic effect
properties of the composite and a number of fluctuat
waves coming from the multiple scattering of the mean wa
by the uniformly and randomly distributed material vari
tions from these of the effective medium. On the average,
fluctuating field should be vanished at any direction with
the effective medium, i.e.,

^k̂"T̃"k̂&50, ~1!

where^ & denotes the average over the composition and
shape of the scatterers,T̃ is a matrix corresponding to th
total multiple scattering operator for the fluctuating wav
and k̂ is the propagation direction of the mean wave. Eq
tion ~1! is well known as self-consistent condition and can
used to determine the dynamic effective properties of
composite material. However, due to the prohibitive com
tational cost of the evaluation of the operatorT̃ Soven49 pro-
posed, instead of Eq.~1!, the use of the following simplified
self-consistent condition:

^k̂"t̃"k̂&50, ~2!

with t̃ being a single scattering operator coming from t
diffraction of the mean wave by each composition, i.e. m
trix and particles, embedded in an infinitely extended eff
tive medium. Devaney33 proved that Eq.~2! could also be
written as a function of the far field scattering amplitudes
the forward direction. Thus, for identical homogeneous p
ticles embedded in a homogeneous elastic or liquid ma
Eq. ~2! assumes the following form:

n1g(1)~ k̂,k̂!1~12n1!g(2)~ k̂,k̂!50, ~3!

wheren1 represents the volume fraction of the particles a
g(1)( k̂,k̂), g(2)( k̂,k̂) are the forward scattering amplitude
taken by the solution of the two single wave scattering pr
lems illustrated in Fig. 1. The solution of the single scatter
problem is described in the next section.
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 Aggeli
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According to the IEMA the self-consistent condition~3!
is satisfied numerically through an iterative procedure, wh
can be summarized as follows.

Consider a harmonic elastic plane wave with circu
frequencyv, either longitudinal~P! or transverse~SH or
SV!, traveling through the composite. Due to the presence
the particles, multiple scattering occurs and thereby the c
sidered wave becomes both dispersive and attenuated an
complex wavenumberkd

eff(v) can be written as

kd
eff~v!5

v

Cd
eff~v!

1 iad
eff~v!, ~4!

with Cd
eff(v) andad

eff(v) being the frequency dependent wa
phase velocity and attenuation coefficient, respectively. T
subscriptd denotes either longitudinal (d[p) or transverse
(d[s) wave.

Next, the composite material is replaced by an elas
homogeneous and isotropic medium with effective Lam
constants meff, leff, given by the static model o
Christensen,53

leff5l21

n1~l12l2!S l21
4

3
m2D

n2~l12l2!1S l21
4

3
m2D ,

~5!

AS meff

m2
D 2

12BS meff

m2
D1C50.

Subscripts 1 and 2 indicate particle and matrix material pr
erties, respectively, andA, B and C are functions of
(m1 ,m2 ,n1) given in the paper of Christensen.53 Since the
Lame’ constantl is usually referred to an elastic medium,
the present work where liquid suspensions and emulsions
considered the bulk modulusKeff5leff1(2/3)gmeff is used
instead.

For the cases of a liquid matrix, the shear modulus,meff,
instead of being calculated through~5!, is set to a very small
value, since, even for high concentrations, the inclusions
not form an interconnected network that would effective
reinforce the shear rigidity of the mixture. In the prese
paper the shear modulus for all the considered liquid pha
has been taken equal to 100 Pa.

In the first step of the IEMA, the effective density of th
composite is assumed to be

~reff!step15n1r11~12n1!r2 . ~6!

FIG. 1. A plane mean wave propagating in the effective medium and s
tered by ~a! a matrix inclusion~problem 1! and ~b! a particle inclusion
~problem 2!.
3445s et al.: Dispersion and attenuation predictions in suspensions



e
m
b

on
in
pli
n

-

he

d
ta

i-
s

e
at
s

en
t
i

fu
o
,
a

cl
a

om
le
e
a

loy
su-
me
ec-
if-
ent
eal
ted
re-
it-
for
nd
m.
A
sity
lex

e-

the
om-
er-

e in
on-

e of
lts
ent

le
ach

d in
a

era-

e it
the

hear
ese
sur-
Then, the effective wave number (kd
eff)step1 is evaluated as

straightforward through the relations

~kp
eff!step15vF3Keff14meff

3~reff!step1
G2 1/2

, ~7!

for a P-wave and

~ks
eff!step15vF meff

~reff!step1
G2 1/2

, ~8!

for a shear wave, respectively.
In the sequel, utilizing the material properties obtain

from the first step, the two single wave scattering proble
illustrated in Fig. 1 are solved. The solution of these pro
lems is accomplished analytically from the matrix notati
of the Ying and Truell formulation, as will be explained
Sec. III. Combining the evaluated forward scattering am
tudesgd

(1,2)( k̂,k̂), according to the self-consistent conditio
~3!, i.e.,

gd~ k̂,k̂!5n1gd
(1)~ k̂,k̂!1~12n1!gd

(2)~ k̂,k̂!, ~9!

and making use of the dispersion relation proposed by W
terman and Truell,3 one obtains the new effective wave num
ber of the mean wave,

@~kd
eff!step2#

25@~kd
eff!step1#

21
3n1gd~ k̂,k̂!

a3

1
9n1

2~gd
2~ k̂,k̂!2gd

2~ k̂,2 k̂!!

4k2a6 , ~10!

where a is the radius of the smallest sphere including t
particle.

The new complex wave number (kd
eff)step2 of the mean

wave propagating through the composite medium is the
parture point of the second step. Keeping the same s
material properties~5! for the effective medium and utilizing
relations ~7! and ~8! for longitudinal and transverse inc
dence, respectively, one calculates the new effective den
of the host medium (reff)step2, which due to (kd

eff)step2 is now
complex. Considering the new material propertiesleff ,meff

and (reff)step2, the two single wave scattering problems d
picted in Fig.1 are solved again and the procedure is repe
until the self-consistent condition~3! is satisfied. This mean
that (kd

eff)step(n21)5(kd
eff)step(n) . Finally, the evaluatedkd

eff in
conjunction with Eq. 4 determines the frequency depend
effective velocity Cd

eff(v) and the attenuation coefficien
ad

eff(v) of the propagating wave. The whole procedure
summarized in the flow chart of Fig. 2.

In the just described procedure, a point that needs
ther discussion is the use of the complex density through
the iterations of the IEMA. From a physical point of view
one can say that the choice of using the density as the m
parameter controlling the material properties of a parti
suspension seems to be realistic, since both dispersion
attenuation are dynamic properties of the considered c
posite medium. On the other hand the idea of a comp
density is not something new in the literature. As a repres
tative example one can mention the works of Petculescu
Wilen,54 Leeet al.55 and Pan and Horne56 dealing with sound
3446 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004
d
s
-

-

a-

e-
tic

ity

-
ed

t,

s

r-
ut

in
e
nd
-

x
n-
nd

propagation and fluid flow in porous media and that emp
complex densities in their frequency domain analysis. U
ally, the imaginary and real part of a complex density co
from the frequency domain transformation of first and s
ond order time derivatives, respectively, involved in the d
ferential operator of the problem. Thus, beyond the differ
type of explanations being available in the literature, the r
and imaginary part of a complex density are directly rela
to the kinetic and the absorbing energy of the medium,
spectively. This could explain why in the proposed here
erative methodology the complex density is responsible
the final evaluation of the frequency dependent velocity a
attenuation coefficient of the particulate composite mediu

It should be also mentioned that an alternative IEM
procedure would be the consideration of a constant den
@Eq. ~6!# for all the steps and the use of either the comp
values of the bulk modulus evaluated from Eq.~7! when
longitudinal waves propagate through the composite m
dium, or the complex shear modulus obtained from Eq.~8!
when shear waves are considered. However, although
two procedures seem to be equivalent, the use of the c
plex modulus instead of the complex density leads to disp
sion and attenuation predictions that in many cases ar
poor agreement with experimental observations. On the c
trary and as it is evident in the sections after next, the us
the complex density in the IEMA procedure provides resu
being in a very good and sometimes in excellent agreem
with the available experimental data.

III. FORMULATION AND SOLUTION OF THE SINGLE
SCATTERING PROBLEM

In this section the formulation and solution of the sing
scattering problem is briefly described. The present appro
is based on the Ying and Truell formulation22 considering
scattering of a plane wave on an elastic sphere embedde
an infinite elastic matrix. The subject of scattering on
spherical obstacle has been discussed extensively in lit
ture so only general guidelines will be presented here.

When a compressional wave impinges on the particl
gives rise to both compressional and shear waves inside
particle, as well as the scattered compressional and s
waves outside the particle. Expressions for each of th
waves are equated using the boundary conditions at the

FIG. 2. A schematic representation of IEMA.
Aggelis et al.: Dispersion and attenuation predictions in suspensions
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face of the particle, yielding four equations with four u
known scattering coefficients,An , Bn , Cn and Dn . In the
present formulation temperature and heat transfer effects
not included. The equations, concerning namely the cont
ity of the normal and tangential velocity component as w
as the continuity of the normal and tangential stress com
nent are as follows:

Ank1ahn11~k1a!1Bnnk1ahn11~k1a!2Ck2aj m11~k2a!

2Dnnk2aj m11~k2a!

5~2 i !n21~2n11!
1

k1
@k1aj m11~k1a!#, ~11!

Anhn~k1a!2Bn@~n11!hn~k1a!2k1ahn11~k1a!#

2Cnj m~k2a!1Dn@~n11! j n~k2a!2k2aj n11~k2a!#

5~2 i !n21~2n11!
1

k1
j m~k1a!, ~12!

An@~k1a!2hn~k1a!22~n12!k1ahn11~k1a!#

1Bnn@~k1a!2hn~k1a!22~n12!k1ahn11~k1a!#

2Cnp@~k2a!2 j n~k2a!22~n12!k2aj n11~k2a!#

2Dnpn@~k2a!2 j n~k2a!22~n12!k2aj n11~k2a!#

5~2 i !n21~2n11!
1

k1
@~k1a!2 j m~k1a!22~n12!

3k1aj m11~k1a!#, ~13!

An@~n21!hn~k1a!2k1ahn11~k1a!#

2BnF S n2212
k1

2a2

2 Dhn~k1a!2k1ahn11~k1a!G
2Cnp@~n21! j n~k2a!2k2aj n11~k2a!#

1DnpF S n2212
k2

2a2

2 D j n~k2a!2k2aj n11~k2a!G
5~2 i !n21~2n11!

1

k1
@~n21! j m~k1a!2k1aj m11~k1a!#,

~14!

where k1 and k2 are the longitudinal wavenumbers in th
matrix and inclusion, respectively,k1 and k2 are the shear
wavenumbers in the matrix and inclusion, respectivelyp
5 m2 /m1 , a is the particle radius, andj n and hn are the
spherical Bessel and Hankel functions.

In case the modeling concerns a problem of scatte
on particles suspended in liquid, the equations can be der
by a limiting process (m2➛0).59 As it is already mentioned
in the present work the shear modulus for any liquid ph
was taken to be 100 Pa.

In order to calculate velocity and attenuation for a giv
frequency the equations must be solved for the scatte
coefficients for each value of n. In the case of the scatte
longitudinal wave, theAn coefficients are of interest. Thi
system of equations, in matrix notation, is solved by a M
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 Aggeli
re
u-
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e
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lab routine using standard inversion command. Therefo
the forward scattering amplitude,g, can be calculated
through

g~0!5
1

ik1
(
n50

`

~2n11!An ,

~15!

g~p!5
1

ik1
(
n50

`

~21!n~2n11!An .

The appropriate order ofn has been shown by O’Neilet al.60

to be roughly equal to the dimensionless wavenumber,k1a,
meaning that for higher frequency bands as the particle
dius rises significantly compared to the wavelength, and
order to have a reliable calculation of the scattering am
tude and therefore velocity and attenuation, more scatte
terms must be summed in Eq.~15!.

Indeed, this is evident throughout the present work
can be seen in Fig. 3. There, two indicative examples c
cerning the order ofn, necessary for the convergence
velocity via the Waterman and Truell dispersion relation a
depicted. In Fig. 3~a! where a case of a lead/epoxy partic
late composite is considered, it is seen that for frequency
MHz corresponding tok1a53, for particle radius 660mm,
the velocity obtains a constant value after aboutn56. In Fig.
3~b! the medium is a polystyrene in the saline suspens
and the appropriate number ofn for convergence is 16 while
thek1a equals 12.5~radius 152mm and frequency 20 MHz!.
It is seen that generally velocity and attenuation conver
for order k1a13 while thereafter no detectable change
mentioned. Thereforen was set equal to the integer ofk1a
17 for the needs of the present study.

IV. RESULTS AND DISCUSSION

In this section the prediction capability of the IEMA i
examined. Although it has been proven to yield accurate
sults for particulate composites38 for volume concentrations
as high as 50%, herein the efficiency of IEMA is address
also for liquid matrix systems. Calculations are carried o
for several cases of systems for which experimental data

FIG. 3. ~a! Velocity vs ordern for 5.2% by volume composite of 660mm
radius lead spheres in epoxy.~b! Velocity vs ordern for 3% by volume
suspension of 152mm radius polystyrene spheres in water.
3447s et al.: Dispersion and attenuation predictions in suspensions
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TABLE I. Material properties.

Material
Cp

~m/s!
Cs

~m/s!
l

~Gpa!
m

~Gpa!
r

(Kg/m3) Fig.

Iron 5941 3251 110.99 82.86 7840 4~a!
PMMA 2669 1305 4.37 2.00 1175
TiC 10000 6200 113.28 188.36 4900 4~b!
Epoxy 2523 976 5.58 1.19 1250
Lead 2210 860 38.48 8.36 11300 5
Epoxy ~828z! 2640 1200 4.92 1.73 1202
Al7091 6305 3066 59.5 26.7 2840 6
SiCp 12210 7707 100.0 196.0 3300
Glass 5280 3240 17.15 26.16 2492 7
Epoxy ~3012! 2541 1161 4.44 1.59 1180
Polystyrene 2337 1098 3.21 1.27 1053 8, 9~b!, 10
Water 1500 — 2.250 – 1000 8, 9~b!, 10, 12,

13, 14~b!
Glass 6790 4167 27.36 41.76 2405 9~a!
ATB 1026 — 2.49 – 2365
Glass 5600 3400 20.6 28.9 2500 11
Glycerol–water
mixture

1840 — 4.063 1200 11

Xylene 1320 — 1.513 – 868.2 12
Bromoform 900 — 2.341 – 2890 13~a!
Benzene 1320 — 1.5263 – 876 13~b!, 14~a!
Water/glycerine 1711 — 3.232 – 1104 14~a!
Carbon
tetrachloride

968 — 1.536 – 1640 14~b!
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available in the literature. The material properties of the c
stituent phases are summarized in Table I along with
corresponding figure number where experimental and th
retical curves are depicted. Although water and polystyr
takes part in more than one measurement, the propertie
not exhibit remarkable differences from one case to oth
therefore they are mentioned once.

A. Particulate composites

The first material studied is an Iron/PMMA composit
In Fig. 4~a! comparison between measured and calcula
longitudinal velocity is depicted for a monochromatic wa
(k1a50.06). The experimental data are obtained by
work of Piche and Hamel.57 As observed the agreement
excellent while the Waterman–Truell model, as expect
predicts well only for low concentrations.

The other case, Fig. 4~b!, concerns a titanium carbona
~TiC! in epoxy composite at the dimensionless frequen

FIG. 4. A comparison between predicted and measured longitudinal velo
for ~a! an iron/PMMA composite~experimental data from Ref. 52! and ~b!
for a titanium carbonate in epoxy composite~experimental data from Ref
11!.
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k1a50.02. It is obvious that the agreement for almost
volume fractions between experimental velocity11 and IEMA
predictions is very good. In this figure, the predictions ma
by the Waterman and Truell approach, without applying
iterative procedure, are also supplied. It is seen that
agreement is good but for high volume fractions the use
the self-consistent relation seems to more closely follow
trend at higher volume fractions.

The next case under consideration is a lead/epoxy~Epon
828z! composite with spherical particles of radius 660mm
and volume fractions 26% and 52%; see Figs. 5~a! and 5~b!,
respectively. The theoretical results are compared agai
those taken directly from the Waterman–Truell dispers
relation. Although the discrepancy between IEMA resu
and experiment ~taken from the work of Kinra and
Rousseau58! seems to increase with volume content, it can
said that, qualitatively, the results are in good agreement.

ity
FIG. 5. A comparison between predicted and measured~Ref. 58! longitudi-
nal velocity for a 660mm radius lead spheres in an epoxy composite w
volume fraction~a! 26% and~b! 52%.
Aggelis et al.: Dispersion and attenuation predictions in suspensions
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important conclusion drawn by this figure is that the IEM
predicts the shift of the lowest and highest resonance
quencies to higher values as the volume fraction increa
The position of the resonant frequencies can be found in
diagrams of Fig. 5 since at these frequencies the velo
obtains maximum values.

Figure 6 depicts the longitudinal wave velocity of al
minum ~Al ! matrix composites containing silicon carbid
~SiCp! particles. The increase of velocity with volume fra
tion is apparent for both cases and predicted values are q
close to the experimental ones concerning the random or
tation of the particles. After microstructural characterizati
of the material,13 the average SiCp size varied approximate
from 2 to 4mm. For the theoretical predictions the diame
was considered to be 3mm.

The last particulate composite case concerns the att
ation of the glass/epoxy~Tra-cast 3012! system. The attenu
ation measurements carried out by Kinraet al.61 for a 45%
volume content of glass and the corresponding prediction
IEMA are presented in Fig. 7. It is apparent that the IEM
follows closely the experimental data for the frequency ran

FIG. 6. A comparison between predicted and measured~Ref. 13! longitudi-
nal velocity for a SiCp in aluminum composite, matrix type 7091.

FIG. 7. A comparison between the predicted and measured~Ref. 61! longi-
tudinal attenuation for a glass/epoxy~Tra-cast 3012! composite.
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tested, while the Waterman and Truell approach seems
able only for low frequencies.

B. Elastic–liquid suspensions

Liquid suspension modeling does not require a mu
different approach. As mentioned above, since liquids do
support shear waves, the shear modulus of the matrix
tained values very small~100 Pa!.

The first case studied is a 1% by volume polystyrene
water suspension with particle size 50mm interrogated
experimentally16 in the frequency band 3–30 MHz by mean
of ultrasonic spectroscopy. Overall, the predicted shape
the phase velocity and attenuation curves tracks the exp
mental results closely as seen in Figs. 8~a! and 8~b!, respec-
tively. The peaks and nadirs of the IEMA model coincid
with the experimentally measured ones for both velocity a
attenuation being closer than the original Waterman and T
ell dispersion relation.

Another case of interest lies in Fig. 9~a!. There, the ve-
locity of glass in acetylene tetrabromide-benzene~ATB! is

FIG. 8. A comparison between the predicted and measured~Ref. 16! sound
velocity of a suspension of 1% polystyrene spheres in water with radius~a!
50 mm and~c! 70 mm and corresponding attenuation~b! and ~d!.

FIG. 9. A comparison between the predicted and measured sound vel
of a suspension of~a! glass in ATB~experimental data from Ref. 18! and~b!
polystyrene in water~experimental data from Ref. 15!.
3449s et al.: Dispersion and attenuation predictions in suspensions
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depicted vs the volume content. The frequency applied
perimentally is 5 MHz while the particle radius is 12.5mm,
resulting in k1a50.3829. The experimental data is due
McClements and Povey18 and they are in excellent agree
ment with IEMA predictions.

In Fig. 9~b! another case of polystyrene in water is e
amined concerning the effect of the volume fraction in v
locity at 2 MHz. In such systems, due to the low-dens
contrast between the two phases thermal effects are expe
to be dominant.15 However, although the present formulatio
omits such effects, theoretical predictions are very close
experimental data.15

The same work of Holmeset al.15 contains interesting
comparisons between the dispersive behavior of differ
particle volume fraction suspensions sharing though
same particle size. In Fig. 10 the experimentally obser
dispersion of 20.6% and 45.5% with a particle size of 3
nm between 2 and 50 MHz is depicted. It is apparent t
both the IEMA and the Waterman–Truell model predict w
for the present case.

The last case of elastic in a liquid suspension presen
herein concerns a suspension of monodisperse~radius 0.438
mm! glass beads in a 75% glycerin–25% water mixture. T
properties of the suspended and continuum media exh

FIG. 11. A comparison between the predicted and measured~Ref. 42! sound
velocity of a glass beads in glycerol–water mixture suspension for volu
fraction ~a! 34% and~b! 45%.

FIG. 10. A comparison between the predicted and measured~Ref. 15! sound
velocity of a 308 nm polystyrene spheres in water suspension for diffe
volume contents.
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large mismatch~the sound velocity of fluid is 1840 m/s whil
of glass beads 5600 m/s! resulting in strongly scattering be
havior. IEMA succeeds in predicting very well the expe
mental behavior42 up to about 5 MHz tested for the cases
34% and 45% volume content of glass as seen in Figs. 1~a!
and 11~b!, respectively.

C. Liquid–liquid emulsions

Apart from the suspension of elastic particles in fluid
separate category can be assumed for the liquid–liquid em
sions. Ultrasonic parameters of such systems as velocity
attenuation can also here be very closely predicted usinm
5100 Pa for both liquids and following the same iterati
procedure. All experimental data concerning this section
taken again from McClements and Povey.18

In Fig. 12 a water in xylene emulsion is described w
droplet size 5mm, measured at the frequency of 5 MHz for
wide range of volume fractions. In the next Fig. 13 two cas
of water based emulsions are presented. In Fig. 13~a! the
dispersed phase is bromoform and in Fig. 13~b! it is benzene.
The droplet size is 3mm for the first case and 8mm for the
second while the frequencies used are 3 and 2 MHz, res
tively. As can be seen, the increase of the dispersed liq

e

nt

FIG. 12. A comparison between the predicted and measured~Ref. 18! sound
velocity of water in a xylene emulsion.

FIG. 13. A comparison between the predicted and measured~Ref. 18! sound
velocity of ~a! bromoform in water and~b! benzene in water emulsion.
Aggelis et al.: Dispersion and attenuation predictions in suspensions
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content causes a certain decrease in sound velocity, whi
predicted exactly by the IEMA present herein.

The cases of the last figure concern a benzene in wa
40% glycerin emulsion, see Fig. 14~a!, and a carbon tetra
chloride in water emulsion, Fig. 14~b!. It is seen that the
decrease in velocity with the increase of a droplet conten
very closely predicted using the iterative procedure on
Ying and Truell formulation described herein. The propert
of all different phases of the emulsions can be found in Ta
I.

V. CONCLUSIONS

A recently introduced iterative methodology for th
quantitative estimation of wave dispersion and attenua
due to scattering is described here. Although successf
tested for particulate composites,38 in this work its effective-
ness is examined additionally on suspensions of solids
liquid and liquid in liquid emulsions systems. The obtain
theoretical curves concerning velocity and attenuation p
dict very closely the experimental results, regardless of
nature of the phases. The elastic properties of the effec
medium are given by the static mixture model
Christensen53 while for the case of liquid matrix the shea
rigidity is taken as 100 Pa. The dynamic behavior of t
system is characterized by the complex effective mate
density, calculated through the iterative procedure discus
above. The IEMA being simpler than the one proposed
Kim et al.37 is very powerful even for high volume fraction
where it provides predictions close to experimental obse
tions. The IEMA can be used as a practical tool for wa
dispersion and attenuation prediction being very useful
applications in a nondestructive evaluation. Taking into c
sideration thermal effects is expected to improve the ac
racy of dispersion and attenuation predictions and is p
posed as a task for future work.
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